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Abstract 

Background  Machine learning models promise to support diagnostic predictions, but may not perform well in new 
settings. Selecting the best model for a new setting without available data is challenging. We aimed to investigate 
the transportability by calibration and discrimination of prediction models for cognitive impairment in simulated 
external settings with different distributions of demographic and clinical characteristics.

Methods  We mapped and quantified relationships between variables associated with cognitive impairment using 
causal graphs, structural equation models, and data from the ADNI study. These estimates were then used to generate 
datasets and evaluate prediction models with different sets of predictors. We measured transportability to external 
settings under guided interventions on age, APOE ε4, and tau-protein, using performance differences between inter-
nal and external settings measured by calibration metrics and area under the receiver operating curve (AUC).

Results  Calibration differences indicated that models predicting with causes of the outcome were more trans-
portable than those predicting with consequences. AUC differences indicated inconsistent trends of transport-
ability between the different external settings. Models predicting with consequences tended to show higher AUC 
in the external settings compared to internal settings, while models predicting with parents or all variables showed 
similar AUC.

Conclusions  We demonstrated with a practical prediction task example that predicting with causes of the outcome 
results in better transportability compared to anti-causal predictions when considering calibration differences. We 
conclude that calibration performance is crucial when assessing model transportability to external settings.
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Introduction
Dementia is the second leading cause of death glob-
ally [1], and more than 55 million people currently have 
dementia. Detecting dementia at an early stage of cogni-
tive impairment is essential to give affected individuals 
adequate care and eventually administer disease-modify-
ing treatments [2]. In recent years, several machine learn-
ing (ML) models have been proposed to support clinical 
decision making by predicting the diagnosis of Alzhei-
mer’s disease (AD) and cognitive impairment [3–8]. The 
models were developed with data from different cohorts 
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and included different predictor variables, such as image-
derived brain volumetric measures, cognitive test results, 
or demographic predictors. One obstacle for deploying 
such prediction models in clinical practice is that they 
might not generalize well when being transported (i.e., 
being applied) to other settings (e.g., in another hospital 
or regions with different patient demographics). One rea-
son for reduced transportability may be that ML models 
learn non-causal associations between input and output 
variables, which might be different in external settings [9, 
10]. This scenario can especially occur when models pre-
dict a diagnosis based on clinical consequences of the dis-
ease (e.g., when prediction is in the anti-causal direction) 
[11–13]. For prospective applications, end-users face 
the challenge of finding the most transportable model to 
their setting where data has not yet been collected.

Causality research established two approaches to 
improve transportability for prediction models. First, 
causal relationships can be incorporated in predic-
tion models a priori for learning relationships that are 
more stable across settings and can therefore avoid sys-
tematic failures in external settings [10, 14–17]. To this 
aim, directed acyclic graphs (DAGs) are a useful tool to 
map assumed causal relationships between variables, 
represent differences and commonalities between set-
tings [18, 19], and select variables for transportable 
health prediction tasks [11, 20, 21]. Second, the stability 
of learned relationships can be assessed through guided 
interventions (also known as perturbations) on data 
distributions to simulate differences between internal 
and external validation settings [17, 22, 23]. Research in 
epidemiology and ML has adopted DAGs and interven-
tions to develop transportable ML models [24–33]. Pic-
cininni et  al. described the use of DAGs for selecting a 
single predictor in a hypothetical clinical risk prediction 
model for AD. [24] They discussed that prediction mod-
els for AD are more likely to transport well to different 
settings when the selected predictor is a cause of AD and 
not a consequence. Rojas-Carulla et  al. and Magliacane 
et  al. applied automatic hypothesis testing to determine 
a transportable predictor set across multiple source 
domains. [29, 30] Subbaswamy et  al. used interventions 
to achieve that predictors do not depend on unreliable 
parts of the data-generating process and thereby gener-
alize to unknown test data. [34] In another study, Singh 
et  al. proposed a model predicting acute kidney injury 
to ensure the fairness of predictions on unseen test data 
by applying DAGs and interventions. [31] Steingrimsson 
et al. demonstrated an approach to assess transportabil-
ity to external settings where the outcome variable has 
not yet been measured using inverse-odds weights. [35] 
These and other works [36–38] measured transportabil-
ity to unseen data by comparing mean-squared error or 

discrimination performance (e.g., area under the receiver 
operating curve (AUC)) between internal and external 
validation settings. Following the work of Van Calster 
et al., however, we argue that discriminatory metrics may 
not be a suitable metric to assess external validity because 
predicted risks can be unreliable even if algorithms have 
good discrimination, and instead suggest calibration as a 
crucial metric to measure transportability [39].

In this work, we aim to compare the transportability, 
measured by calibration and discrimination, of models 
predicting cognitive impairment with different sets of 
predictors to simulated external settings to add evidence 
for two questions: 1) how to construct transportable ML 
models and 2) how to assess the transportability.

Methods
Data source and data preprocessing
Data used in the preparation of this article were obtained 
from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) database (adni.loni.usc.edu). The primary goal of 
ADNI has been to test whether medical imaging, biologi-
cal markers, and clinical and neuropsychological assess-
ment can be combined to measure the progression of 
mild cognitive impairment (MCI) and early AD. For up-
to-date information, see www.​adni-​info.​org. The ADNI 
study acquired multiple longitudinal measurements from 
elderly subjects across more than 50 clinics in USA and 
Canada [40, 41]. The ADNI study enrolled participants 
who have mild cognitive impairment or a diagnosis of 
early AD and elderly controls between the age of 55 and 
90  years old. We used the ADNI data subset that was 
created for the TADPOLE grand challenge (https://tad-
pole.grand-challenge.org/Data), which is also available 
at https://ida.loni.usc.edu.  We selected individuals who 
had a diagnosis and clinical measurements at baseline 
(n = 1,737) and considered baseline variables that have 
been reported to be related to AD and had less than 30% 
of missing entries. Detailed information on data preproc-
essing is provided in Supplementary Text 1. Missing data 
were imputed using the R package ‘mice’ with default 
settings, and three imputed datasets were generated. All 
numeric variables were normalized by z-transformation. 
We defined the outcome variable ‘cognitive impairment’ 
based on the final diagnosis variable in ADNI by consid-
ering participants with cognitive normal or subjective 
memory complaint as “cognitively normal” and partici-
pants with mild cognitive impairment or AD as “with 
cognitive impairment.”

DAG creation
In DAGs, nodes represent variables, and directed edges 
represent direct causal relationships pointing from 
the direct cause to the effect [18, 42, 43]. We reviewed 

http://www.adni-info.org
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the scientific literature to identify causal relationships 
between variables in our dataset that are involved in 
cognitive impairment and AD processes (Supplemen-
tary Table S1) and mapped them in a first DAG (Supple-
mentary Fig. S1). Then, we tested if the generated DAG 
was a good fit to the ADNI dataset, using conditional 
independence testing with the R package ‘dagitty.’ [44] 
We reviewed those test results with low p-values and 
large point estimates, which indicated a violation of the 
implied conditional independence. We added 13 causal 
connections (Supplementary Text 2) according to the test 
results and our domain expertise to create the final DAG 
(Fig. 1).

Semi‑synthetic data generation using structural equation 
models
We fitted a structural equation model (SEM) using the 
three imputed ADNI datasets to quantify the causal 
relationships specified in our DAG. The SEM was imple-
mented using the ‘sem’ function in the R package ‘lavaan’ 
with default parameters [45]. For numeric endogenous 
variables, the function computes weighted least squares 
estimates. For categorical endogenous variables, the 
function automatically uses a diagonally weighted least 
squares estimator and assumes that a conditional nor-
mally distributed latent variable underlies the categorical 
variable (and estimates the thresholds).

We then used the SEM parameter estimates (Supple-
mentary Table S2) to generate six semi-synthetic datasets 
with 10,000 individuals each: one for training, one for 
internal validation, and four for external validation of ML 
models. We bootstrapped exogenous variables (age, sex, 
and APOE ε4) 10,000 times without replacement from 
the original data. We used those to generate the endog-
enous variables for training and internal validation sets, 

using the linear equations from the SEM (see Supple-
mentary Fig.  S2 for an overview). We generate the four 
external validation sets implemented by interventions on 
the variables to reflect different populations with:

1) a younger mean age, compared to the original data 
(73 years ⇒ 35 years, which is similar to the global 
world population mean at 311),
2) a younger mean age compared to original data, but 
higher compared to the first age validation setting ⇒ 
65 years (referred to as “age2”),
3) lower prevalence of the APOE ε4 gene compared 
to the original data (46.9% ⇒ 5.0%), and
4) a different mechanism generating the endogenous 
variable tau-protein, measured in cerebrospinal fluid.

For the external age-intervention data, we sampled 
the age variable from a normal distribution with a mean 
age of 35 (and mean of 65 for age2 setting) and stand-
ard deviation of 10 and bootstrapped APOE ε4 and sex. 
For the APOE ε4 intervention, we sampled the APOE ε4 
variable from a Bernoulli distribution with a 5% prob-
ability and bootstrapped age and sex. For the tau inter-
vention, we altered the mechanism determining tau 
levels by intervening on the parameters estimated by 
the SEM for the tau equation. In particular, we arbitrar-
ily changed the intercept from the tau equation from 
-0.5 to 0.9, increased the influence of age on tau from 
0.37 to 0.9, increased the influence of apoe4 from 0.57 
to 0.8, increased the influence of hypertension from 
0.14 to 0.9, and reduced the influence of alcohol from 
0.57 to 0.001.

Fig. 1  Directed acyclic graph of variables related to cognitive status. Predictor variables are marked in blue, and the outcome variable (cognitive 
status) in green. Directed arrows indicate assumed causal relationships between variables. The included variables are: APOE ε4 (apoe4), age, sex, 
education (educ), CSF-Aβ (aβ), history of alcohol abuse (alc), history of smoking behavior (smok), Body Mass Index (bmi), history of hypertension 
(hypert), CSF-tau (tau), history of cardiovascular events (cardio), cognitive status (cogn), hippocampus (hippo), ventricles (ventr), intracranial volume 
(icv), FDG-PET (fdg), Mini-Mental State Exam score (mmse)

1  https://​world​popul​ation​review.​com/​count​ry-​ranki​ngs/​median-​age

https://worldpopulationreview.com/country-rankings/median-age
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Prediction algorithms
We applied logistic regression, lasso regression, random 
forest, and generalized boosted regression (GBM) to pre-
dict the cognitive state of an individual as either cognitive 
normal or with cognitive impairment. Logistic regres-
sion was performed using the glm function in the ‘stats’ 
R package. Lasso regression was implemented using the 
‘glmnet’ R package [46]. The lasso model was initialized 
with an optimized penalization hyperparameter obtained 
from a grid-search with tenfold cross validation that 
selected the value of lambda for minimum deviance. The 
random forest is an ensemble of regression trees, which 
aims at improving generalizability compared to a single 
regression tree [47]. Previous works demonstrated the 
strengths of random forests for diagnostic prediction 
modelling of AD [3–5]. The random forest algorithm was 
applied from the ‘randomForest’ R package, using 500 
trees and √p number of variables randomly sampled at 
each split (as per default), where p is the number of pre-
dictors. GBM implements boosting by adding regression 
trees sequentially with respect to the error of the current 
tree ensemble. This boosting approach increases robust-
ness and generalizability compared to a single regression 
tree [48–50]. The GBM algorithm was applied using the 
‘gbm’ R package with 100 trees (as per default).

Based on the causal assumptions in our DAG, we 
defined four predictor sets that included either all varia-
bles or only those which are direct causes of the outcome 
(defined as parent nodes), or only direct consequences of 
the outcome (defined as children nodes), or only exog-
enous variables (age, sex, and APOE ε4) (Table 1). Each 
ML model was trained and validated with each predictor 
set. We performed 10,000 repetitions to generate the six 
datasets (one for training, one for internal validation, and 
four for external validation) for training and validating all 
prediction models.

We repeated this procedure three times, each time 
using the SEM parameters obtained from one of the 

three imputed ADNI datasets. As a sensitivity analysis, 
we additionally ran 100 repetitions using hyperparam-
eter tuning to minimize the deviance for the random for-
est (tuned parameters: number of predictors sampled for 
splitting at each node from 1 to 5, and the minimum size 
of terminal nodes of 1, 5 or 10) using generated training 
datasets with 1,000 observations.

Assessing transportability
We calculated calibration metrics and the AUC dis-
crimination performance for all prediction models in the 
internal validation setting and in each external validation 
setting. Calibration was measured using the Integrated 
Calibration Index (ICI) [51] and the calibration compo-
nent of a three-way decomposed Brier score [52]. Low 
ICI and Brier scores indicate better calibration. The Brier 
calibration component (termed ‘reliability’) was obtained 
from the bias-corrected ‘BrierDecomp’ function of the 
‘SpecsVerification’ R package using quantile bins of pre-
dicted probabilities in 10% steps. The AUC was obtained 
from the ‘pROC’ R package. AUC values close to one 
indicate good discrimination performance.

We assessed the transportability between the internal 
setting and each external validation setting by differences 
in calibration (ICI or Brier score) and in AUC. Differ-
ences of zero indicate equal performance in both inter-
nal validation and external settings and, therefore, good 
transportability. Negative calibration differences val-
ues indicate decreased calibration from internal valida-
tion to the intervention setting and therefore decreased 
transportability. AUC differences greater than zero indi-
cate decreased discriminatory performance from inter-
nal validation to the intervention setting and thus low 
transportability.

We calculated the median, 2.5%, and 97.5% percentiles 
for performance metrics across all 10,000 repetitions for 
each of the three imputed ADNI datasets. See Fig. 2 for 
a summary of our workflow. All prediction algorithms, 

Table 1  Predictor sets with corresponding lists of variable names. The predictor variables comprised age, APOE ε4, sex, years 
of education, Body Mass Index (BMI), history of hypertension, history of alcohol abuse, history of smoking behavior, history of 
cardiovascular events, Cerebrospinal fluid (CSF) of tau and Amyloid β (Aβ), volumes measured from brain magnetic resonance imaging 
(sum of left and right hippocampal volumes, sum of left and right ventricle volumes, intracranial volume, fluorodeoxy-glucose-
positron emission tomography (FDG-PET)), and Mini Mental State Exam score (MMSE)

Predictor set Variable names

All nodes age, APOE ε4, sex, education, BMI, history of hypertension, history of alcohol abuse, 
history of smoking behavior, history of cardiovascular events, CSF-tau, CSF-Aβ, hip-
pocampus, ventricles, intracranial volume, FDG-PET, MMSE

Parent nodes age, APOE ε4, sex, education, BMI, history of cardiovascular events, CSF-tau, CSF-Aβ

Children nodes hippocampus, ventricles, intracranial volume, FDG-PET, MMSE

Exogenous nodes age, APOE ε4, sex
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data simulations, and data analyses were implemented 
using R version 4.0.3.

Results
Description of the participants’ characteristics
The ADNI study, represented in TADPOLE, recorded a 
total of 1737 participants with a diagnosis at baseline 
together with their demographic information (age, sex, 
and education), behavioral information (smoking and 

alcohol abuse history), clinical measurements (BMI, 
FDG-PET imaging, brain volumetric measurements 
with MR imaging, Aβ and tau protein concentrations in 
cerebrospinal fluid (CSF), Minimental State Cognitive 
Exam (MMSE)) and medical history (history of hyper-
tension and cardiovascular events) (Table 2). Among all 
participants, 1214 (69.9%) were diagnosed with cogni-
tive impairment, which comprised 872 (71.8%) individ-
uals with mild cognitive impairment and 342 (28.7%) 
individuals with AD. A total of 523 (30.1%) individuals 

Fig. 2  Our approach to assess the transportability of machine learning models predicting cognitive impairment. Orange boxes mark the four 
general steps of our workflow. We first mapped knowledge about cognitive impairment into a Directed Acyclic Graph (DAG) and quantified 
those using Structural equation modelling (SEM) and data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). The estimates were used 
in linear equations to generate datasets for training, internal validation and four external validation datasets with interventions on age, APOE ε4, 
and tau. The age variable was intervened two times (age and age2) by sampling from normal distributions with two different mean age values 
(35 and 65). We trained four machine learning algorithms (logistic regression, lasso regression, random forest and generalized boosted regression) 
to predict cognitive impairment using four sets of predictors. We measured transportability between internal and external settings using calibration 
differences, measured by Integrated Calibration Index (ICI) and Brier score, and differences in Area under the Receiver Operating Curve (AUC). Steps 
3 to 4 (data synthesis and model training and validation) were repeated 10,000 times for each of the three imputed ADNI datasets
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was diagnosed as cognitive normal, including 106 
(20.3%) individuals with subjective memory complaint.

Semi‑synthetic data generation
The SEM estimated all parameters quantifying the causal 
relationships in the DAG in Fig. 1. We reviewed the esti-
mated parameters and found that many were in agree-
ment with existing neurological domain knowledge. For 
example, age had a positive coefficient and therefore 
increased CSF-tau (0.37), the likelihood of hypertension 
(0.11), and the likelihood of cardiovascular events history 
(0.13) (Supplementary Table S3). Some estimated rela-
tionships, however, were controversial to domain knowl-
edge. For example, increasing age decreased CSF-Aβ 
(-0.14) and the likelihood of cognitive impairment 
(-0.13). The SEM additionally indicated a small correla-
tion between sex and age and between age and APOE ε4.

We compared endogenous variable distributions 
between the original ADNI data and generated valida-
tion datasets generated by SEM parameters from the 
first imputed dataset (Supplementary Table S4) and 
found that the percentage of cognitive impairment 
was similar between the internal validation set (70.0%, 
2.5% and 97.5% percentiles [69.1, 71.0]) and the original 
ADNI data (69.9%). We further compared endogenous 
variable distributions between internal and external 
datasets. Lowering the mean age of 73.8  years in the 

internal validation setting to 35  years in the external 
setting slightly decreased the prevalence of cognitive 
impairment from 70.0% to 68.3%, increased the smok-
ing prevalence from 23.4% to 34.1% and alcohol abuse 
history from 1.5% to 46.5%, decreased the prevalence of 
hypertension from 35.0% to 8.0% and previous cardio-
vascular events from 65.1% to 32.4%. Intervening on age 
increased the mean of Aβ from 1076.6 to 1521.0 pg/ml, 
shrank the mean of tau from 292.7 to 180.8  pg/ml, and 
increased the MMSE from 27.3 to 29.6, in comparison to 
the internal validation data. The differences between the 
internal and external variable distributions were smaller 
but followed the same trends when reducing the mean 
population age only slightly from 73.8 to 65.0 in the age2 
intervention setting.

In the APOE ε4 intervention, lowering the prevalence 
of the APOE ε4 gene from the internal setting to the 
external setting decreased the prevalence of cognitive 
impairment from 70.0% to 63.1%, increased the mean of 
CSF-Aβ from 1076.6 to 1291.2 pg/ml and decreased the 
mean CSF-tau from 292.7 to 260.1 pg/ml.

In the tau intervention, altering the intercept and coef-
ficients that determine tau levels between the internal 
setting to the external setting increased the level of CSF-
tau from 292.7 to 476.4 and increased the prevalence of 
cognitive impairment from 70.0% to 82.3%.

Table 2  Participant characteristics of ADNI dataset at baseline stratified by cognitive status. Numeric variables are indicated with * and 
are given with median and 25–75% interquartile range (IQR). All other variables are categorical variables with two categories, and the 
absolute number and the column-wise percentage of the reference category are given. Absolute numbers of missing values (Nmiss) 
are given. Abbreviations: Body Mass Index (BMI), Cerebrospinal fluid (CSF), Amyloid β (Aβ), Mini Mental State Exam score (MMSE)

Variables Cognitive normal
n = 523 (30.1%)

Cognitive impairment
n = 1214 (69.9%)

Total
n = 1737 (100%)

Age* 73.7 (70.5, 78.0) 74.0 (68.3, 79.3) 73.9 (69.2, 78.9)

APOE ε4 149 (28.6%)
Nmiss: 2

660 (54.8%)
Nmiss: 10

809 (46.9%)
Nmiss:12

sex (male) 253 (48.4%) 704 (58.0%) 957 (55.1%)

education* (years) 16 (14, 18) 16 (14, 18) 16 (14, 18)

CSF-Aβ* (pg/ml) 1271 (820.8, 1734.0)
Nmiss: 156

741.5 (559.1, 1130.3)
Nmiss: 366

854.2 (596.2, 1395.5)
Nmiss: 522

CSF-tau* (pg/ml) 214.3 (175.2, 287.8)
Nmiss: 156

281.6 (210.4, 379.2)
Nmiss: 366

257.8 (193.4, 349.7)
Nmiss: 522

history of alcohol abuse 16 (3.1%)
Nmiss: 6

27 (2.3%)
Nmiss: 27

43 (2.5%)
Nmiss: 33

history of smoking 115 (26.8%)
Nmiss: 94

223 (23.2%)
Nmiss: 254

338 (24.3%)
Nmiss: 348

BMI* 28.6 (25.8, 32.5)
Nmiss: 4

28.17 (25.5, 31.2)
Nmiss: 5

28.31 (25.5, 31.6)
Nmiss: 9

history of hypertension 130 (24.9%) 460 (38.0%)
Nmiss: 5

590 (34.1%)
Nmiss: 5

history of cardiovascular events 343 (65.6%) 835 (68.8%) 1178 (67.8%)

MMSE* 29.0 (29.0, 30.0) 27.0 (25.0, 29.0) 28.0 (25.0, 29.0)
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Internal calibration and discrimination of the models
We evaluated the internal validation performance meas-
ured by calibration and AUC metrics (Fig. 3, Supplemen-
tary Figs. S3, and S4, and Supplementary Table S5) of all 
models. ICI scores were close to 0 for all logistic and 
lasso models (e.g., logistic and lasso with parents as pre-
dictors 0.009 2.5% and 97.5% percentiles [0.004, 0.016]). 
Random forest and GBM models had lower calibration 
(indicated by higher ICI values) compared to logistic and 
lasso models (using parents as predictors, random for-
est 0.035 [0.024, 0.046], GBM 0.029 [0.019, 0.039]). Ran-
dom forest models predicting with exogenous variables 
(age, sex, and APOE ε4) had very low calibration (0.292 
[0.277, 0.305]). Brier scores were exactly zero or closer 
to zero in the internal validation setting compared to 
the ICI scores, except for random forest models predict-
ing with exogenous variables, which showed the lowest 
calibration (0.088 [0.080, 0.094]) among all models. AUC 
indicated the best performance for models predicting 
with all variables, and of those models, logistic regres-
sion and lasso regression achieved the highest AUC 

(0.75 [0.73, 0.76]) compared to random forest (0.73 [0.72, 
0.74]) and GBM (0.71 [0.70, 0.73]). All models predicting 
with exogenous variables had the lowest discriminatory 
performance of 0.5.

Measuring transportability by calibration differences
We compared the transportability of prediction models 
measured by calibration differences between internal val-
idation and intervention settings (Supplementary Table 
S6). For this, we focus on logistic regression and lasso 
regression predicting with all variables, parents, chil-
dren, and exogenous variables, since they showed good 
calibration in the internal setting. In all intervention set-
tings, models predicting with parent nodes were more 
transportable than those predicting with children nodes 
(Fig. 4, Supplementary Figs. S3, and S4). Models predict-
ing with parents had good transportability in interven-
tion settings, indicated by a similar calibration (thereby 
small calibration difference) between the internal valida-
tion and intervention setting. For example, the median 
ICI difference between the internal validation and age 

Fig. 3  Model performance in the internal validation setting, measured by the integrated calibration index (ICI), Brier score, and area 
under the receiver operating curve (AUC). Cognitive impairment was predicted using logistic regression, lasso regression, random forest (rf ), 
and generalized boosted regression (gbm) prediction models. Models were trained either with all predictor variables, only parent nodes (direct 
causes) of the outcome, only children nodes (consequences) of the outcome, or with the exogenous variables age, sex, and APOE ε4 (apoe4). 
Depicted are the full distributions of ICI, Brier scores, and AUC, smoothed with a Gaussian kernel density function and medians marked with ◊. The 
displayed metrics were obtained from 10,000 repetitions of data generation and model training on the first imputed dataset
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intervention for logistic regression was very small (ICI 
-0.009 [-0.045, 0.006]). Models predicting with children 
variables had low transportability in intervention set-
tings, as indicated by negative calibration differences. 
For example, logistic regression predicting with children 
had a median ICI difference between the internal and age 
intervention setting of -0.300 [-0.322, -0.276], which was 
33.3-fold lower than predicting with parents. The largest 
difference in the median ICI differences between parents 
and children was in the age intervention setting (logistic 

regression: 0.291), and the smallest one was in the APOE 
ε4 setting (logistic regression: 0.008). Logistic regres-
sion models predicting with all variables were  equally 
or less transportable compared to models predicting 
with parent variables (e.g., age intervention: all predic-
tors median ICI -0.031 [-0.073, 0.002], parent predictors: 
-0.009 [-0.045, 0.006]; tau: all predictors -0.014 [-0.022, 
-0.005], parents 0.000 [-0.007, 0.008]). Similar results 
were observed for the lasso regression models. In the 
age2 and APOE ε4 intervention setting, the calibration 

Fig. 4  Transportability between internal validation and external settings, measured by the difference of integrated calibration index (ICI). 
Four intervention test sets were created with 1) reducing the population mean age from 73 to 35 years, 2) reducing the population mean age 
from 73 to 65 years (age2), 3) reducing the APOE ε4 allele frequency from 46.6% to 5.0%, and 3) changing the SEM-parameters for generating 
the endogenous variable tau. Cognitive impairment was predicted using logistic regression, lasso regression random forest (rf ), and generalized 
boosted regression (gbm) prediction models. Models were trained either with all predictor variables, only parent nodes (direct causes) 
of the outcome, only children nodes (consequences) of the outcome, or exogenous variables (exo) age, sex, and APOE ε4 allele frequency. Depicted 
are the full distributions of ICI differences from 10,000 repetitions on the first imputed dataset, smoothed with a Gaussian kernel density function 
and medians marked with ◊
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differences were close to zero for logistic and lasso mod-
els with all predictors and parent predictors. Using exog-
enous variables as predictors had calibration differences 
close to zero, except in the tau intervention setting. We 
found low transportability of logistic and lasso regression 
models with all sets of predictors in the tau-intervention 
setting. Only the models predicting with parent variables 
had zero calibration differences.

Random forest and GBM models also showed generally 
lower transportability in terms of  ICI differences  when 
using children as predictors compared to parents and 
higher transportability for parent predictors compared to 
all predictors. However, random forest and GBM mod-
els predicting with parents had ICI differences between 
internal and external validation differences far from zero. 
Brier scores supported the same trends as the ICI (Sup-
plementary Figs. S4 and S5, Supplementary Table S6).

Measuring transportability by AUC differences
When measuring transportability with AUC, we found 
only small differences in AUC between internal valida-
tion and intervention settings. The AUC-differences 
showed inconsistent transportability trends between 
the intervention settings. In the age-intervention set-
ting, models predicting with children variables also had 
lower transportability compared to models predicting 
with parent predictors, indicated by a positive AUC dif-
ference between internal validation and intervention 
setting (logistic regression with parent predictors: -0.01 
[-0.04, 0.02], logistic regression with children 0.02 [0.00, 
0.04], Fig. 5, Supplementary Figs. S6 and S7, Supplemen-
tary Table S6). In the age2 and tau intervention settings, 
however, logistic regression models predicting with chil-
dren increased their AUC by 0.03 compared to the inter-
nal validation setting, whereas logistic regression models 
predicting with parent predictors had AUC differences 
close to zero. AUC differences indicated similar trans-
portability close to zero for all predictors compared to 
parent predictors in all intervention settings. We found 
that models predicting with all variables had consistently 
higher AUC in the internal validation and in interven-
tion settings, compared to models predicting with par-
ent variables (Supplementary Table S5). Lasso regression, 
random forest, and GBM models indicated similar trends 
as logistic regression models.

Sensitivity analyses with other imputed datasets 
and hyperparameter tuning
We performed sensitivity analysis by using the other two 
imputed dataset as input for the SEM-model. We did not 
find any differences between model performance results 
(ICI, Brier score, and AUC) between replicates that used 

three different imputed datasets as input (Supplementary 
Figs. S5, S7, S8, S9).

Optimizing hyperparameter for random forest mod-
els did not meaningfully improve calibration or AUC 
performance (Supplementary Fig. S10). The observed 
trends for transportability measured by ICI differences 
(i.e., parent predictors being more transportable com-
pared to children) remained for random forest in the age-
interventions settings, but in the tau-intervention setting, 
optimized random forest models predicting with chil-
dren may have equal or better ICI transportability (-0.019 
[-0.044, 0.012]), compared to parents (-0.032 [-0.063, 
-0.003]).

Discussion
In this study, as a first contribution, we have presented a 
causal data generation approach for assessing the trans-
portability of prediction models for cognitive impairment 
in synthetic external settings with different distributions 
of age, APOE ε4 allele frequency, and tau. As a second 
contribution, we assessed transportability by comparing 
performance between internal and external validation 
settings, measured by the discrimination performance 
(AUC) as in most prior studies [29–31, 33], but also by 
calibration (ICI and Brier calibration component).

Both calibration metrics, ICI, and the Brier score con-
firmed the previous causal theory that prediction models 
that use direct causes of the outcome for the prediction 
are generally more transportable [11, 24]. We showed 
that, under a specific set of interventions, calibration per-
formance remained stable when ML models predicted 
only with direct causes (parent nodes) but was reduced 
when predicting with consequences (children nodes) of 
the outcome ‘cognitive impairment.’ We found that this 
held true in all prediction models (logistic regression, 
lasso regression, random forest, and GBM). However, we 
highlight that this theoretically justified pattern in cali-
bration differences only holds if a model has very good 
calibration in the internal setting. It may be possible that 
a model predicting with children variables has better cali-
bration performance than a model predicting with par-
ent variables in a new setting if the model with children 
predictors outperforms the model with parent variables 
in the internal validation setting.

Measuring transportability by AUC differences indi-
cated inconsistent trends for transportability and did not 
reflect the pattern described for calibration. Calibration 
measures the closeness between the average predicted 
probabilities and the relative frequency of the outcome 
event and therefore reflects the actual capability of pre-
dicting the state of the outcome variable. In contrast, 
the AUC depends on the ranking of the predicted risks 
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and measures the probability that a predicted risk for a 
randomly drawn individual with the event is higher com-
pared to a randomly drawn individual without the event 
[39]. With our results, we reinforce the claim that besides 
discrimination, good calibration is important to achieve 
clinically useful prediction models [39].

In our simulation, we found that the random forest 
and the GBM algorithms were not well calibrated in the 
internal setting. The miscalibration might have happened 
because we generated data assuming linear relation-
ships in the SEM, whereas random forest and GBM are 
designed to capture non-linear relationships [53].

Fig. 5  Transportability between internal validation and external settings, measured by the difference of area under the receiver operating curve 
(AUC). Four intervention test sets were created with 1) reducing the population mean age from 73 to 35 years, 2) reducing the population mean 
age from 73 to 65 years (age2), 3) reducing the APOE ε4 allele frequency from 46.6% to 5.0%, and 3) changing the SEM-parameters for generating 
the endogenous variable tau. Cognitive impairment was predicted using logistic regression, lasso regression random forest (rf ), and generalized 
boosted regression (gbm) prediction models. Models were trained either with all predictor variables, only parent nodes (direct causes) 
of the outcome, only children nodes (consequences) of the outcome, or exogenous variables (exo) age, sex, and APOE ε4 allele frequency. Depicted 
are the full distributions of AUC differences from 10,000 repetitions on the first imputed dataset, smoothed with a Gaussian kernel density function 
and medians marked with ◊
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Our study further showed that causal thinking is essen-
tial when selecting predictors for clinical prediction mod-
els. Previously developed prediction models for dementia 
and AD have used brain volumetric measures or cogni-
tive assessment scores as predictors because they reduced 
prediction errors [5, 54, 55]. Similarly to another work 
[56], we assumed that these predictors (brain volumetric 
measures and cognitive test results) are consequences of 
the cognitive outcome status and therefore predict in the 
anti-causal direction leading to reduced transportability 
to external settings. Another work suggested that predic-
tors derived from medical images may often predict in 
the anti-causal direction as they depict the consequences 
of a disease, which may raise a caveat towards transport-
ability [15]. In our simulation, we found that models 
predicting with all predictors (causes and consequences 
of cognitive impairment) had better discriminatory per-
formance in all settings compared to models with parent 
variables, but calibration differences indicated better or 
similar transportability for models using parent predic-
tors only. It may be worthwhile to investigate if recalibra-
tion approaches could improve the calibration of models 
using all predictors in external settings without compro-
mising discriminatory performance.

Our application to assess transportability has limita-
tions. First, it cannot be empirically verified if DAGs 
map causal relationships correctly and if all relevant fac-
tors were included. We only included observed variables 
(other than latent variables for factors), and it is likely 
that there are unobserved variables involved in the causal 
process of cognitive impairment. Strong domain exper-
tise is crucial to build accurate DAGs [42]. Conditional 
independence tests can test if there is evidence against 
a given DAG in a dataset [12]. We applied conditional 
independence tests to add directed connections between 
variables, but unexplainable violations were present. 
Causal relationships should generally be assumed to exist 
between any two variables and that they should only be 
omitted when evidence is available [21]. We ensured that 
our assumptions in the DAG correctly represent the data 
by using semi-synthetic data so that any possible mis-
specification of the DAG did not affect the evaluation of 
the model transportability.

Second, we applied a SEM to the ADNI data to quan-
tify the causal relationships in our DAG. While SEMs 
are widely applied for this purpose [16], their method-
ology has limitations when using categorical variables 
[57–59]  and they rely on strong and unverifiable para-
metric assumptions. In our application, we had seven 
categorical variables and found a small correlation 
between sex and age and between age and APOE ε4. We 
believe this correlation might stem from biased selec-
tion in the ADNI study, which we did not consider in our 

DAG. Additionally, we found that some SEM parameter 
estimates were controversial to domain knowledge. For 
example, the relationship between age and cognitive 
impairment was estimated to be -0.13, whereas the prev-
alence of cognitive impairment is known to increase with 
age. The incorrect SEM estimates may have altered the 
effects of the interventions. For example, reducing the 
mean age from 73.9 to 35 only reduced the prevalence 
of cognitive impairment by 2%. This was likely because 
the ADNI study included only elderly (> 55 years) partic-
ipants, and the SEM may not have been able to estimate 
the correct relationship across this limited age range. 
Third, it was not possible to evaluate our results with 
real data from external settings. Obtaining observational 
data from specific healthcare settings for external valida-
tion is often difficult due to data protection. Simulating 
external data may therefore be inevitable for anticipat-
ing transportability [60]. We simulated external valida-
tion data by intervening on specific variables (either age 
or APOE ε4, and tau) at a time. These interventions sim-
plify general distribution shifts between populations in 
real-world applications where multiple variables can 
vary jointly. Fourth, our prediction models had subopti-
mal discrimination performance, similar to other studies 
[36], with the highest achieved AUC of 0.75 in the inter-
nal validation setting. Optimizing hyperparameter did 
not improve the performance. Better performance could 
be achieved by using multi-modal data and deep neural 
networks [3, 61].

Our approach to assess the transportability of mod-
els predicting cognitive impairment can be extended to 
overcome the described limitations. Future work could 
integrate our causal data generation approach with the 
work of Pölsterl et  al. and include unobserved variables 
in the causal model [56]. To ensure that the estimated 
parameters of causal relationships follow biological laws, 
future refinements could include the SEM with prior 
distributions as implemented in the blavaan R pack-
age [62] or explore alternative latent variable models. 
Future research could adapt our approach for measuring 
transportability to models using deep learning, to other 
use-cases, and  to high-dimensional data and compare 
simulated data with real world data (i.e., with a prediction 
model). For example, recent deep learning models pre-
dicted AD from structural brain MR images [7, 63]. Deep 
learning models often suffer from poor calibration [64], 
however, new approaches to train calibrated deep learn-
ing models offer solutions for better calibration [65, 66]. 
Additional research to generate synthetic medical images 
on the basis of causal models has emerged [67], leaving 
an exciting open challenge to identify causal structures in 
complex data [67] and assess transportability to new set-
tings using interventions and synthetic images.
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Conclusions
Actionable machine learning for health algorithms 
requires good transportability to new settings but meas-
uring transportability before deployment is challenging. 
We have used an approach to assess the transportability 
of prediction models for predicting cognitive impairment 
using a causal graph and semi-synthetic data to simu-
late different external validation scenarios. Our results 
contain an empirical illustration of the existing theory 
that models predicting with causes of the outcome have 
better transportability than those predicting with con-
sequences of the outcome and can help to better select 
predictors for prediction models. We conclude that 
measuring transportability should include assessing the 
calibration in external settings. Future research can adapt 
our approach to other use cases and high-dimensional 
data such as images and apply new interventions to simu-
late more realistic external scenarios.
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